
GIAN Course on Solving Linear Systems and
Computing Generalized Inverses Using Recurrent

Neural Networks
June 09-19, 2025, IIT Indore,

(The Least Squares Problem and QR
Decompostion)

1 / 60

Overview

Topics Covered:

1. Description of the Least Squares Problem

2. Rotators, Reflectors, and the QR Decomposition

3. Solving Least Squares via QR Decomposition

4. Gram-Schmidt Orthonormalization
• Relation to QR decomposition
• Computational variants

5. Theoretical Foundations (postponed for clarity)

6. Updating the QR Decomposition
• When rows/columns are added or deleted

2 / 60

Motivation

Why Least Squares?

• Many real-world problems involve inconsistent systems of equations

• We seek an approximate solution that minimizes the error

• Leads to the problem:
min
x

∥Ax − b∥2

Applications:

• Data fitting

• Signal processing

• Machine learning

• Control systems

3 / 60

Motivation

Why Least Squares?

• Many real-world problems involve inconsistent systems of equations

• We seek an approximate solution that minimizes the error

• Leads to the problem:
min
x

∥Ax − b∥2

Applications:

• Data fitting

• Signal processing

• Machine learning

• Control systems

3 / 60

The Discrete Least Squares Problem

• Given a set of data points (ti , yi) for i = 1, . . . , n, we seek a line

p(t) = a0 + a1t

that fits the data.

• In general, the data does not lie exactly on a line ⇒ no exact solution.

• We define the residuals:
ri = yi − p(ti)

and consider the residual vector r = [r1, . . . , rn]
T .

4 / 60

Least Squares Formulation

• We seek p(t) that minimizes the residual norm ∥r∥.
• Different norms lead to different problems:

• 1-norm: ∥r∥1 =
∑

|ri |
• ∞-norm: ∥r∥∞ = max |ri |
• 2-norm (Euclidean): ∥r∥2 =

√∑
r2i

• The most widely used and best understood is the **least squares** approach:

min
a0,a1

∥r∥22 =
n∑

i=1

(yi − a0 − a1ti)
2

5 / 60

Statistical Justification for Least Squares

• If measurement errors in yi are:
• Independent,
• Normally distributed,
• Mean zero, constant variance σ2,

then minimizing ∥r∥22 gives the **Maximum Likelihood Estimator (MLE)**.

• Justifies use of 2-norm in least squares problems.

6 / 60

Polynomial Approximation

• A straight line: p(t) = a0 + a1t is a degree-1 polynomial.

• Sometimes higher-degree polynomials fit data better.

• General form (degree < m):

p(t) = a0 + a1t + a2t
2 + · · ·+ am−1t

m−1

• Called the Discrete Least Squares Problem because data points (ti , yi) are finite.

7 / 60

Polynomial Basis and Vector Space

• Set of polynomials of degree < m forms a vector space of dimension m.

• Standard basis: ϕ1(t) = 1, ϕ2(t) = t, . . . , ϕm(t) = tm−1.

• Any p(t) can be written as:

p(t) = x1ϕ1(t) + x2ϕ2(t) + · · ·+ xmϕm(t)

• Alternate bases may improve numerical stability.

8 / 60

Matrix Form of the Problem

• For n data points and m basis functions:

Ax ≈ b

where:
• A ∈ Rn×m, Aij = ϕj(ti),
• x ∈ Rm: coefficient vector,
• b ∈ Rn: vector of yi values.

• If n > m, this is an **overdetermined system**.

9 / 60

Least Squares Formulation

• We seek x minimizing the residual:

r = b − Ax

• Least squares problem:
min
x∈Rm

∥r∥22 = min
x

∥b − Ax∥22

• Includes fitting with:
• Polynomials,
• Trigonometric functions,
• Exponentials,
• Any basis functions ϕj(t).

10 / 60

What Comes Next

• We will solve the least squares problem using:
• Normal equations: ATAx = ATb
• Orthogonal transformations: QR decomposition

• These techniques ensure numerical stability and efficient computation.

11 / 60

Rotation in R2

• A rotation through angle θ is a linear transformation:

Q =

[
cos θ − sin θ
sin θ cos θ

]
• Acts on any vector x ∈ R2 by rotating it counterclockwise.

• This matrix is called a rotator.

12 / 60

Properties of Rotators

• QTQ = I Q is orthogonal.

• det(Q) = 1

• Q−1 = QT : inverse of a rotator is a rotation through −θ.
• Rotators preserve:

• Vector norms: ∥Qx∥ = ∥x∥
• Angles between vectors

13 / 60

Using Rotators to Create Zeros

• Let x =

[
x1
x2

]
, with x1 ̸= 0.

• Find rotator Q such that:

QT x =

[
y
0

]
• Choose:

cos θ =
x1√

x21 + x22

, sin θ =
x2√

x21 + x22

• This ensures cos2 θ + sin2 θ = 1

14 / 60

Geometric Interpretation

• For every x ∈ R2, there exists a rotation matrix Q such that:

QT x =

[
∥x∥
0

]
• Interpretation: Rotating vector x onto the x-axis.

• This is a basic step in constructing the QR decomposition.

15 / 60

Application to Matrices

• Let A ∈ R2×2. Then:
QTA = R

where R is upper triangular.

• Generalizes to A ∈ Rn×n: for such A, there exists an orthogonal matrix Q and an
upper triangular matrix R such that:

QTA = R

• This is the foundation of the **QR decomposition**.

16 / 60

QR Decomposition

• For any matrix A ∈ Rm×n, there exist:
• Q ∈ Rm×m orthogonal
• R ∈ Rm×n upper triangular

such that:
A = QR

• QTA = R ⇒ transformation to upper triangular form

• Fundamental in solving least squares and linear systems

17 / 60

Solving Linear Systems Using QR Decomposition

• Given a QR decomposition: A = QR, where
• Q is orthogonal: QTQ = I
• R is upper triangular

• To solve Ax = b, rewrite as:
QRx = b

• Let y = Rx ⇒ Qy = b ⇒ y = QTb

• Now solve Rx = y via back substitution.

18 / 60

Summary of the QR Method

1. Compute the QR decomposition: A = QR

2. Compute y = QTb

3. Solve Rx = y using back substitution

Advantage

QR decomposition is especially useful when A is full-rank but not square or poorly
conditioned for LU.

19 / 60

Two Viewpoints

• Multiply both sides of Ax = b by QT :

QTAx = QTb ⇒ Rx = c

• Or, write A = QR, and:

QRx = b ⇒ Q(Rx) = b

• In both cases:
c = QTb, Rx = c

• Same method from two equivalent perspectives.

20 / 60

Example: Solving a System Using QR Decomposition

We want to solve the system:

Ax = b, where A =

[
1 1
1 −1

]
, b =

[
2
0

]
Step 1: Construct Q and R.

Using vector x =

[
1
1

]
. Now

cos θ =
1√
2
, sin θ =

1√
2
⇒ Q =

[
1√
2

− 1√
2

1√
2

1√
2

]

21 / 60

Then:

R = QTA =

[√
2 0

0
√
2

]
Step 2: Solve QTb = c

c = QTb =

[
1√
2

1√
2

− 1√
2

1√
2

] [
2
0

]
=

[√
2

−
√
2

]
Step 3: Solve Rz = c by back substitution

√
2z1 =

√
2 ⇒ z1 = 1

√
2z2 = −

√
2 ⇒ z2 = −1

Solution: x =

[
1
−1

]

22 / 60

Plane Rotators in Rn (Givens Rotators)

A plane rotator is an n× n matrix that looks like the identity, except for a 2× 2 rotation
block in rows and columns i and j .

Definition:

Q(i , j , θ) =



1
. . .

cos θ · · · − sin θ
...

. . .
...

sin θ · · · cos θ
. . .


∈ Rn×n

where the 2× 2 rotation is in rows and columns i and j .

Properties:
• Q is orthogonal: QTQ = I
• det(Q) = 1
• Applying Q or QT to a vector alters only the i-th and j-th components

Use: Givens rotations are used to zero out specific entries of vectors or matrices,
particularly in QR decomposition.

23 / 60

Using a Plane Rotator to Zero an Entry

Given a vector

x =



...
xi
...
xj
...


∈ Rn

we choose c and s such that:

c =
xi√

x2i + x2j

, s =
xj√

x2i + x2j

⇒ QT x has a zero in position j

If xi = xj = 0, use c = 1, s = 0.

Only the i-th and j-th entries of x are modified.

24 / 60

Geometric Interpretation of a Plane Rotator

A plane rotator acts on vectors in Rn by rotating only in the {xi , xj}-plane.

Key Idea: A vector x ∈ Rn can be uniquely decomposed as:

x = p + p⊥

• p lies in the xixj -plane
• p⊥ is orthogonal to the xixj -plane

Action of the Plane Rotator Q:
• Rotates p through angle θ in the xixj -plane
• Leaves p⊥ unchanged

Visualization

Only components of x along axes i and j are affected. All other components remain
unchanged.

25 / 60

Theorem: QR Decomposition Using Rotators

Theorem: Let A ∈ Rn×n. Then there exists an orthogonal matrix Q and an upper
triangular matrix R such that

A = QR.

Proof Sketch:

• Construct Q as a product of plane rotators (Givens rotations).

• Apply rotators Q21,Q31, . . . ,Qn1 to zero out entries below a11 in column 1.

• These rotators only affect rows below the current pivot and preserve existing zeros
above.

• Proceed to column 2:
• Apply Q32,Q42, . . . ,Qn2 to zero entries below a22.

• Repeat this process for columns 3 through n − 1.

26 / 60

Q = Qn,n−1 · · ·Q32Qn1 · · ·Q21, R = Q⊤A

Since Q is a product of orthogonal matrices, Q itself is orthogonal.
Exercise Cost of QR Decomposition via Rotators Exercise: Show that the algorithm
sketched in the proof of Theorem takes O(n3) flops to transform A to R.

Analysis:
• For each column k = 1 to n− 1, we apply Givens rotations to eliminate entries below
the diagonal.

• Number of Givens rotations per column: n − k .
• Each Givens rotation affects only two rows ⇒ it requires about 2(n − k) flops.

Total flop count:

n−1∑
k=1

(n − k) · 2(n − k) = 2
n−1∑
k=1

(n − k)2 = 2
n−1∑
j=1

j2 = 2 · (n − 1)n(2n − 1)

6

⇒ O(n3) flops

27 / 60

Reflectors: Geometric Definition

Goal: Construct a matrix Q that reflects any vector x ∈ R2 across a line ℓ through the
origin.

Let:

• v be a nonzero vector on the line ℓ

• u be a unit vector orthogonal to ℓ

• Any x ∈ R2 can be written as x = αu + βv

Then:
Reflection through ℓ : x 7→ −αu + βv

Matrix Formulation:

• Let P = uuT where u is unit vector (∥u∥2 = 1)

• Define Q = I − 2P

28 / 60

Qx = (I − 2uuT)x is the reflection of x across the hyperplane orthogonal to u

Properties

• Q is symmetric: Q = QT

• Q is orthogonal: QTQ = I

• det(Q) = −1

29 / 60

Proposition: Reflector Matrix

Let u ∈ Rn be a nonzero vector. Define:

Q = I − 2

∥u∥22
uuT

Then Q is a reflector with the following properties:

(a) Qu = −u (Reflection inverts u)
(b) Qv = v for all v such that uT v = 0 (Orthogonal vectors remain unchanged)

Proof Sketch:
• Normalize u so that ∥u∥ = 1 ⇒ Q = I − 2uuT

• Then:
Qu = (I − 2uuT)u = u − 2u = −u

• If uT v = 0:
Qv = (I − 2uuT)v = v − 2u(uT v) = v

Conclusion: Q reflects vectors through the hyperplane orthogonal to u
30 / 60

Theorem : Reflecting x to y

Statement: Let x , y ∈ Rn with x ̸= y and ∥x∥2 = ∥y∥2. Then there exists a unique
reflector Q such that:

Qx = y

Construction: Let u = x − y , then define:

Q = I − 2

∥u∥2
uuT

Proof Sketch:
• Decompose x as:

x =
1

2
(x + y) +

1

2
(x − y)

• Note: x − y = u and x + y is orthogonal to u since:

(x − y)T (x + y) = ∥x∥2 − ∥y∥2 = 0

• Apply Q:

Q(x − y) = −u = y − x

Q(x + y) = x + y (no change)

31 / 60

Theorem : Reflecting x to y

Statement: Let x , y ∈ Rn with x ̸= y and ∥x∥2 = ∥y∥2. Then there exists a unique
reflector Q such that:

Qx = y

Construction: Let u = x − y , then define:

Q = I − 2

∥u∥2
uuT

Proof Sketch:
• Decompose x as:

x =
1

2
(x + y) +

1

2
(x − y)

• Note: x − y = u and x + y is orthogonal to u since:

(x − y)T (x + y) = ∥x∥2 − ∥y∥2 = 0

• Apply Q:

Q(x − y) = −u = y − x

Q(x + y) = x + y (no change)

31 / 60

Theorem : Reflecting x to y

Statement: Let x , y ∈ Rn with x ̸= y and ∥x∥2 = ∥y∥2. Then there exists a unique
reflector Q such that:

Qx = y

Construction: Let u = x − y , then define:

Q = I − 2

∥u∥2
uuT

Proof Sketch:
• Decompose x as:

x =
1

2
(x + y) +

1

2
(x − y)

• Note: x − y = u and x + y is orthogonal to u since:

(x − y)T (x + y) = ∥x∥2 − ∥y∥2 = 0

• Apply Q:

Q(x − y) = −u = y − x

Q(x + y) = x + y (no change)
31 / 60

• Thus:

Qx = Q

(
x + y

2
+

x − y

2

)
=

x + y

2
− x − y

2
= y

32 / 60

Reflector Mapping

Statement: Let x ∈ Rn be any nonzero vector. Then there exists a reflector Q such
that:

Qx = y =


±∥x∥2

0
...
0



Proof:

• Let y = [−r , 0, . . . , 0]T with r = ±∥x∥2.
• Choose the sign of r so that x ̸= y .

• Then ∥x∥2 = ∥y∥2.
• By Theorem 3.2.30, there exists a reflector Q such that Qx = y .

Note: Any nonzero vector can be reflected to a scalar multiple of the first standard basis
vector. This is useful in QR factorization via Householder transformations.

33 / 60

Reflector Mapping

Statement: Let x ∈ Rn be any nonzero vector. Then there exists a reflector Q such
that:

Qx = y =


±∥x∥2

0
...
0


Proof:

• Let y = [−r , 0, . . . , 0]T with r = ±∥x∥2.
• Choose the sign of r so that x ̸= y .

• Then ∥x∥2 = ∥y∥2.
• By Theorem 3.2.30, there exists a reflector Q such that Qx = y .

Note: Any nonzero vector can be reflected to a scalar multiple of the first standard basis
vector. This is useful in QR factorization via Householder transformations.

33 / 60

Reflector Mapping

Statement: Let x ∈ Rn be any nonzero vector. Then there exists a reflector Q such
that:

Qx = y =


±∥x∥2

0
...
0


Proof:

• Let y = [−r , 0, . . . , 0]T with r = ±∥x∥2.
• Choose the sign of r so that x ̸= y .

• Then ∥x∥2 = ∥y∥2.
• By Theorem 3.2.30, there exists a reflector Q such that Qx = y .

Note: Any nonzero vector can be reflected to a scalar multiple of the first standard basis
vector. This is useful in QR factorization via Householder transformations.

33 / 60

Example: Stable Computation of ∥x∥2
Problem: Compute ∥x∥2 on a computer that underflows at 10−10. Assume each
component of x is smaller than 10−10 ⇒ all are set to zero.

Result:
∥x∥2 = 0 (incorrect!)

True norm: nonzero → error 5
Solution: Scaling Procedure

• Let β = max1≤i≤n |xi |
• If β = 0, then ∥x∥2 = 0

• Else, scale: x = 1
β z

• Then compute: ∥z∥2 = β · ∥x∥2
Why It Works:

• |xi | < 1 → avoids overflow

• Tiny terms may still underflow but can be ignored safely

• Final norm is rescaled → correct magnitude

34 / 60

Example: Stable Computation of ∥x∥2
Problem: Compute ∥x∥2 on a computer that underflows at 10−10. Assume each
component of x is smaller than 10−10 ⇒ all are set to zero.
Result:

∥x∥2 = 0 (incorrect!)

True norm: nonzero → error 5

Solution: Scaling Procedure

• Let β = max1≤i≤n |xi |
• If β = 0, then ∥x∥2 = 0

• Else, scale: x = 1
β z

• Then compute: ∥z∥2 = β · ∥x∥2
Why It Works:

• |xi | < 1 → avoids overflow

• Tiny terms may still underflow but can be ignored safely

• Final norm is rescaled → correct magnitude

34 / 60

Example: Stable Computation of ∥x∥2
Problem: Compute ∥x∥2 on a computer that underflows at 10−10. Assume each
component of x is smaller than 10−10 ⇒ all are set to zero.
Result:

∥x∥2 = 0 (incorrect!)

True norm: nonzero → error 5
Solution: Scaling Procedure

• Let β = max1≤i≤n |xi |
• If β = 0, then ∥x∥2 = 0

• Else, scale: x = 1
β z

• Then compute: ∥z∥2 = β · ∥x∥2

Why It Works:

• |xi | < 1 → avoids overflow

• Tiny terms may still underflow but can be ignored safely

• Final norm is rescaled → correct magnitude

34 / 60

Example: Stable Computation of ∥x∥2
Problem: Compute ∥x∥2 on a computer that underflows at 10−10. Assume each
component of x is smaller than 10−10 ⇒ all are set to zero.
Result:

∥x∥2 = 0 (incorrect!)

True norm: nonzero → error 5
Solution: Scaling Procedure

• Let β = max1≤i≤n |xi |
• If β = 0, then ∥x∥2 = 0

• Else, scale: x = 1
β z

• Then compute: ∥z∥2 = β · ∥x∥2
Why It Works:

• |xi | < 1 → avoids overflow

• Tiny terms may still underflow but can be ignored safely

• Final norm is rescaled → correct magnitude
34 / 60

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

Q = I − γuuT to a matrix B ∈ Rn×m

Goal: Compute QB = (I − γuuT)B = B − γuuTB efficiently without forming Q
explicitly.
Efficient Strategy:

• Let vT = γuT ⇒ QB = B − uvTB

• Compute vTB ∈ R1×m

• Then compute outer product: u(vTB) ∈ Rn×m

• Subtract: QB = B − u(vTB)

35 / 60

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

Q = I − γuuT to a matrix B ∈ Rn×m

Goal: Compute QB = (I − γuuT)B = B − γuuTB efficiently without forming Q
explicitly.

Efficient Strategy:

• Let vT = γuT ⇒ QB = B − uvTB

• Compute vTB ∈ R1×m

• Then compute outer product: u(vTB) ∈ Rn×m

• Subtract: QB = B − u(vTB)

35 / 60

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

Q = I − γuuT to a matrix B ∈ Rn×m

Goal: Compute QB = (I − γuuT)B = B − γuuTB efficiently without forming Q
explicitly.
Efficient Strategy:

• Let vT = γuT ⇒ QB = B − uvTB

• Compute vTB ∈ R1×m

• Then compute outer product: u(vTB) ∈ Rn×m

• Subtract: QB = B − u(vTB)

35 / 60

Exercise: Efficient Computation of QB = (I − γuuT)B

Let u ∈ Rn, v ∈ Rn, B ∈ Rn×m. We compare flop counts for different computational
strategies.

(a) Compute (uvT)B:

• uvT ∈ Rn×n costs n2 flops

• Multiply with B ∈ Rn×m costs 2n2m flops

• Total: ≈ 2n2m flops

• Requires full n × n intermediate matrix

(b) Compute u(vTB):

• vTB ∈ R1×m costs nm flops

• u(vTB) ∈ Rn×m costs 2nm flops

• Total: nm + 2nm = 3nm flops

• Much cheaper in both time and storage

36 / 60

Exercise: Efficient Computation of QB = (I − γuuT)B

Let u ∈ Rn, v ∈ Rn, B ∈ Rn×m. We compare flop counts for different computational
strategies.
(a) Compute (uvT)B:

• uvT ∈ Rn×n costs n2 flops

• Multiply with B ∈ Rn×m costs 2n2m flops

• Total: ≈ 2n2m flops

• Requires full n × n intermediate matrix

(b) Compute u(vTB):

• vTB ∈ R1×m costs nm flops

• u(vTB) ∈ Rn×m costs 2nm flops

• Total: nm + 2nm = 3nm flops

• Much cheaper in both time and storage

36 / 60

Exercise: Efficient Computation of QB = (I − γuuT)B

Let u ∈ Rn, v ∈ Rn, B ∈ Rn×m. We compare flop counts for different computational
strategies.
(a) Compute (uvT)B:

• uvT ∈ Rn×n costs n2 flops

• Multiply with B ∈ Rn×m costs 2n2m flops

• Total: ≈ 2n2m flops

• Requires full n × n intermediate matrix

(b) Compute u(vTB):

• vTB ∈ R1×m costs nm flops

• u(vTB) ∈ Rn×m costs 2nm flops

• Total: nm + 2nm = 3nm flops

• Much cheaper in both time and storage

36 / 60

(c) Compute QB = B − γu(vTB):

• From (b), u(vTB): 3nm flops

• Subtraction: B − (·): nm flops

• Total: 3nm + nm = 4nm flops

(d) Compute QB using full matrix Q ∈ Rn×n:

• Full matrix multiplication: QB costs 2n2m flops

• Much more expensive

37 / 60

(c) Compute QB = B − γu(vTB):

• From (b), u(vTB): 3nm flops

• Subtraction: B − (·): nm flops

• Total: 3nm + nm = 4nm flops

(d) Compute QB using full matrix Q ∈ Rn×n:

• Full matrix multiplication: QB costs 2n2m flops

• Much more expensive

37 / 60

Theorem: Uniqueness of the QR Decomposition

Theorem 3.2.46: Let A ∈ Rn×n be a nonsingular matrix. Then there exist unique
matrices Q,R ∈ Rn×n such that:

• Q is orthogonal (Q⊤Q = I)

• R is upper triangular with positive diagonal entries

• A = QR

38 / 60

Proof Sketch: Existence

• By Theorem 3.2.20, we know that A = Q̃R̃ for orthogonal Q̃ and upper triangular R̃
(diagonal entries may not be positive).

• Define a diagonal matrix D such that Dii = sign(R̃ii).

• Then define:
Q = Q̃D, R = D−1R̃

• D is orthogonal (since D−1 = D⊤ = D), so Q remains orthogonal and R is upper
triangular with positive diagonal entries.

39 / 60

Proof Sketch: Uniqueness

Assume A = Q1R1 = Q2R2 where:

• Q1,Q2 are orthogonal

• R1,R2 are upper triangular with positive diagonal entries

Then:
A⊤A = R⊤

1 Q⊤
1 Q1R1 = R⊤

1 R1

A⊤A = R⊤
2 R2

• A⊤A is symmetric positive definite

• R1 and R2 are both Cholesky factors of A⊤A

• By uniqueness of the Cholesky decomposition: R1 = R2

• Then Q1 = Q2 follows from Q = AR−1

40 / 60

QR Decomposition with MATLAB

MATLAB’s qr function performs QR decomposition:

A = QR

Q is orthogonal, R is upper triangular.

Matlab Code n = 7; A = randn(n); [Q, R] = qr(A);
Q’*Q norm(eye(n) - Q’*Q) norm(A - Q*R)

41 / 60

Observations from Output

• Orthogonality:
Q⊤Q ≈ I ⇒ norm(eye(n) - Q’*Q) ≪ 1

• Accuracy of Factorization:

A ≈ QR ⇒ norm(A - Q*R) ≪ 1

• Diagonal of R: Entries on the diagonal of R are not necessarily positive.
• MATLAB does not enforce this by default
• Positive diagonals are needed only for uniqueness

42 / 60

Conclusion

• MATLAB’s qr is efficient and numerically stable.

• Orthogonality and reconstruction errors are typically small.

• Diagonal signs in R are not fixed by MATLAB.

Explore further: help qr

43 / 60

Numerical Stability of Rotators and Reflectors

Wilkinson’s analysis (see Wilkinson [81, pp. 126–162]) shows that:

• Both rotators (Givens rotations) and reflectors (Householder matrices) are
numerically stable.

• They are used to construct orthogonal matrices Q for QR decomposition.

• When applied to a matrix A, they produce a small backward error:

Q̂A = Q(A+ E), with
∥E∥2
∥A∥2

≪ 1

Interpretation: The computed result is the exact result for a slightly perturbed input.

44 / 60

Stability Under Repeated Application

Applying multiple orthogonal transformations:

Q̂2Q1A = Q2Q1A+ E , where
∥E∥2
∥A∥2

≪ 1

This follows from:

Q̂1A = Q1(A+ E1), ̂Q2(Q1A) = Q2Q1A+ Q2E1 + E2

Then:
E = Q2E1 + E2, ⇒ ∥E∥2 ≤ ∥E1∥2 + ∥E2∥2

Conclusion: The backward error remains small after multiple applications.

45 / 60

Note on Stability

• Both Givens and Householder transformations are normwise backward stable.

• Errors accumulate slowly: ∥E∥2/∥A∥2 remains small.

• QR decomposition using orthogonal transformations is highly reliable numerically.

Implication: QR-based methods are robust and suitable for solving least squares
problems.

46 / 60

Definition of Complex Rotator

Let z ∈ C, z ̸= 0. Define

U =
1

|z |

[
z̄ −|z |
|z | z

]
• Goal: Show that U is unitary

• and det(U) = 1

47 / 60

(a) U is Unitary

We compute:

U∗U =

(
1

|z |

[
z̄ −|z |
|z | z

])∗(
1

|z |

[
z̄ −|z |
|z | z

])

=
1

|z |2

[
z |z |

−|z | z̄

] [
z̄ −|z |
|z | z

]
=

1

|z |2

[
|z |2 + |z |2 0

0 |z |2 + |z |2
]
= I

Conclusion: U is unitary.

48 / 60

(b) Determinant of U

Use the formula for determinant of a 2× 2 matrix:

det(U) =
1

|z |2
det

[
z̄ −|z |
|z | z

]
=

1

|z |2
(z̄ · z + |z |2) = 1

|z |2
(|z |2 + |z |2) = 1

Conclusion: det(U) = 1

49 / 60

Extension to Cn×n

Note: Complex rotators are building blocks for stable algorithms in the complex domain.

50 / 60

(a) Existence of Complex Reflector

Given x , y ∈ Cn, with x ̸= y , ∥x∥2 = ∥y∥2, and (x , y) ∈ R.
Claim: There exists a unitary matrix Q of the form:

Q = I − βuu∗, β ∈ C, u ∈ Cn

such that Qx = y .

51 / 60

Theorem (Complex QR Decomposition)

Let A ∈ Cn×n be nonsingular.

Then: There exist unique matrices Q,R ∈ Cn×n such that:

• Q is unitary: Q∗Q = I ,

• R is upper triangular with real, positive entries on the diagonal,

• A = QR.

Uniqueness: If A = Q1R1 = Q2R2 with both R1,R2 having real, positive diagonals and
Q1,Q2 unitary, then:

Q1 = Q2, R1 = R2

52 / 60

Theorem (Complex QR Decomposition)

Let A ∈ Cn×n be nonsingular.

Then: There exist unique matrices Q,R ∈ Cn×n such that:

• Q is unitary: Q∗Q = I ,

• R is upper triangular with real, positive entries on the diagonal,

• A = QR.

Uniqueness: If A = Q1R1 = Q2R2 with both R1,R2 having real, positive diagonals and
Q1,Q2 unitary, then:

Q1 = Q2, R1 = R2

52 / 60

MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

Code
n = 4;

A = randn(n) + 1i * randn(n); % Complex matrix

[Q, R] = qr(A); % QR decomposition

Q’ % Conjugate transpose of Q

Q’*Q % Should be the identity

norm(eye(n) - Q’*Q) % Should be near zero

norm(A - Q*R) % Should be near zero

Observations:
• Q is unitary: Q∗Q ≈ I
• A ≈ QR: small residual ∥A− QR∥
• MATLAB handles complex matrices naturally

53 / 60

MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

Code
n = 4;

A = randn(n) + 1i * randn(n); % Complex matrix

[Q, R] = qr(A); % QR decomposition

Q’ % Conjugate transpose of Q

Q’*Q % Should be the identity

norm(eye(n) - Q’*Q) % Should be near zero

norm(A - Q*R) % Should be near zero

Observations:
• Q is unitary: Q∗Q ≈ I
• A ≈ QR: small residual ∥A− QR∥
• MATLAB handles complex matrices naturally

53 / 60

Theorem 3.3.3 (Rectangular QR Decomposition)

Let A ∈ Rn×m with n ≥ m (i.e., a tall matrix).

Then there exist:

• An orthogonal matrix Q ∈ Rn×n, such that QTQ = I ,

• A matrix R ∈ Rn×m, of the form:

R =

[
R̂
0

]
, where R̂ ∈ Rm×m is upper triangular

such that:
A = QR

Summary:

• Q: orthogonal basis for Rn

• R: upper-trapezoidal (first m rows upper triangular, rest zero)

54 / 60

Theorem 3.3.3 (Rectangular QR Decomposition)

Let A ∈ Rn×m with n ≥ m (i.e., a tall matrix).

Then there exist:

• An orthogonal matrix Q ∈ Rn×n, such that QTQ = I ,

• A matrix R ∈ Rn×m, of the form:

R =

[
R̂
0

]
, where R̂ ∈ Rm×m is upper triangular

such that:
A = QR

Summary:

• Q: orthogonal basis for Rn

• R: upper-trapezoidal (first m rows upper triangular, rest zero)

54 / 60

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n ×m matrix
A using Householder reflectors is approximately:

Flops ≈ 2nm2 − 2

3
m3

Sketch of Derivation:
• For each of the m Householder steps:

• Reflector formation: ∼ 2(n − k + 1) flops
• Apply reflector to trailing submatrix of size (n − k + 1)× (m − k)
• Cost per step: ∼ 2(n − k + 1)(m − k)

• Total flops:
m∑

k=1

2(n − k + 1)(m − k) ≈ 2nm2 − 2

3
m3

Interpretation:

If n ≫ m, then Flops ≈ 2nm2

This is linear in n, and quadratic in m.

55 / 60

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n ×m matrix
A using Householder reflectors is approximately:

Flops ≈ 2nm2 − 2

3
m3

Sketch of Derivation:
• For each of the m Householder steps:

• Reflector formation: ∼ 2(n − k + 1) flops
• Apply reflector to trailing submatrix of size (n − k + 1)× (m − k)
• Cost per step: ∼ 2(n − k + 1)(m − k)

• Total flops:
m∑

k=1

2(n − k + 1)(m − k) ≈ 2nm2 − 2

3
m3

Interpretation:

If n ≫ m, then Flops ≈ 2nm2

This is linear in n, and quadratic in m.

55 / 60

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n ×m matrix
A using Householder reflectors is approximately:

Flops ≈ 2nm2 − 2

3
m3

Sketch of Derivation:
• For each of the m Householder steps:

• Reflector formation: ∼ 2(n − k + 1) flops
• Apply reflector to trailing submatrix of size (n − k + 1)× (m − k)
• Cost per step: ∼ 2(n − k + 1)(m − k)

• Total flops:
m∑

k=1

2(n − k + 1)(m − k) ≈ 2nm2 − 2

3
m3

Interpretation:

If n ≫ m, then Flops ≈ 2nm2

This is linear in n, and quadratic in m. 55 / 60

QR Decomposition and Full Rank

Let A ∈ Rn×m with n ≥ m. The QR decomposition:

A = QR

with Q ∈ Rn×n orthogonal and R ∈ Rn×m (upper trapezoidal), helps in solving the least
squares problem:

min
x

∥Ax − b∥2

Key Insight: Rank and Usefulness

• rank(A) = rank(R)

• R = QTA ⇒ rank(R) ≤ rank(A)

• A = QR ⇒ rank(A) ≤ rank(R)

• Therefore, rank(A) = rank(R)

Conclusion:

• A has full rank ⇔ R is nonsingular (i.e., invertible)

56 / 60

QR Decomposition and Full Rank

Let A ∈ Rn×m with n ≥ m. The QR decomposition:

A = QR

with Q ∈ Rn×n orthogonal and R ∈ Rn×m (upper trapezoidal), helps in solving the least
squares problem:

min
x

∥Ax − b∥2

Key Insight: Rank and Usefulness

• rank(A) = rank(R)

• R = QTA ⇒ rank(R) ≤ rank(A)

• A = QR ⇒ rank(A) ≤ rank(R)

• Therefore, rank(A) = rank(R)

Conclusion:

• A has full rank ⇔ R is nonsingular (i.e., invertible)

56 / 60

QR Decomposition and Full Rank

Let A ∈ Rn×m with n ≥ m. The QR decomposition:

A = QR

with Q ∈ Rn×n orthogonal and R ∈ Rn×m (upper trapezoidal), helps in solving the least
squares problem:

min
x

∥Ax − b∥2

Key Insight: Rank and Usefulness

• rank(A) = rank(R)

• R = QTA ⇒ rank(R) ≤ rank(A)

• A = QR ⇒ rank(A) ≤ rank(R)

• Therefore, rank(A) = rank(R)

Conclusion:

• A has full rank ⇔ R is nonsingular (i.e., invertible)

56 / 60

Theorem (Least Squares via QR)

Let A ∈ Rn×m, b ∈ Rn, with n > m, and suppose that A has full rank.

Then the least squares problem:
min
x∈Rm

∥Ax − b∥2

has a unique solution, given as follows:
• Compute the QR decomposition: A = QR, where

Q ∈ Rn×n (orthogonal), R =

[
R̂
0

]
, R̂ ∈ Rm×m (upper triangular)

• Let c = QTb, and define ĉ ∈ Rm as the first m entries of c
• Solve the system:

R̂x = ĉ

Conclusion: The solution to the least squares problem is

x = R̂−1ĉ

57 / 60

Theorem (Least Squares via QR)

Let A ∈ Rn×m, b ∈ Rn, with n > m, and suppose that A has full rank.

Then the least squares problem:
min
x∈Rm

∥Ax − b∥2

has a unique solution, given as follows:
• Compute the QR decomposition: A = QR, where

Q ∈ Rn×n (orthogonal), R =

[
R̂
0

]
, R̂ ∈ Rm×m (upper triangular)

• Let c = QTb, and define ĉ ∈ Rm as the first m entries of c
• Solve the system:

R̂x = ĉ

Conclusion: The solution to the least squares problem is

x = R̂−1ĉ

57 / 60

MATLAB Example: Least Squares via QR

Given: Overdetermined system Ax = b, where A ∈ R5×3

MATLAB Code
n = 5; m = 3;

A = randn(n, m);

b = randn(n, 1);

[Q, R_full] = qr(A);

R = R_full(1:m, 1:m);

c = Q’ * b;

c_hat = c(1:m);

x = R \ c_hat;

residual_norm = norm(A*x - b)

58 / 60

Reference Books

• Lloyd N. Trefethen and David Bau III, Numerical Linear Algebra, SIAM, 1997.

• Gene H. Golub and Charles F. Van Loan, Matrix Computations, 4th Edition,
Johns Hopkins University Press, 2013.

• David S. Watkins, Fundamentals of Matrix Computations, 3rd Edition, Wiley, 2010.

• James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

• Yousef Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, 2011.

• Gilbert Strang, Linear Algebra and Its Applications, 4th Edition, Cengage Learning,
2006.

• Alan J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2005.

59 / 60

Thank You !

60 / 60

	Rotators and Orthogonal Transformations
	Uniqueness of the QR Decomposition
	Complex Rotator
	SOLUTION OF THE LEAST SQUARES PROBLEM

