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Topics Covered:

1. Description of the Least Squares Problem

2. Rotators, Reflectors, and the QR Decomposition
3. Solving Least Squares via QR Decomposition
4

. Gram-Schmidt Orthonormalization

® Relation to QR decomposition
® Computational variants

o

Theoretical Foundations (postponed for clarity)
6. Updating the QR Decomposition
® When rows/columns are added or deleted
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Why Least Squares?
® Many real-world problems involve inconsistent systems of equations
® \We seek an approximate solution that minimizes the error

® | eads to the problem:
min ||Ax — b||2
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Why Least Squares?
® Many real-world problems involve inconsistent systems of equations
® \We seek an approximate solution that minimizes the error
® | eads to the problem:
min ||Ax — b||2
x
Applications:
e Data fitting

Signal processing

Machine learning

Control systems
[ ]
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The Discrete Least Squares Problem

® Given a set of data points (t;,y;) for i =1,...,n, we seek a line
p(t) = ag + ait

that fits the data.
® In general, the data does not lie exactly on a line = no exact solution.
® \We define the residuals:
ri =y — p(t;)

and consider the residual vector r = [r,...,r,]".

Gian
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Least Squares Formulation

e We seek p(t) that minimizes the residual norm ||r||.
e Different norms lead to different problems:

® l-norm: |rlj1 =3 |ri

® oo-norm: ||rljec = max|ri|

® 2-norm (Euclidean): [[r]2 = +/>_r?

® The most widely used and best understood is the **|east squares** approach:

n

min 3 = 3" (i — a0 — art;)?
0,491 i—1
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Statistical Justification for Least Squares

® |f measurement errors in y; are:

® |ndependent,
® Normally distributed,
® Mean zero, constant variance o2,

then minimizing ||r||3 gives the **Maximum Likelihood Estimator (MLE)**.

® Justifies use of 2-norm in least squares problems.
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Polynomial Approximation

A straight line: p(t) = ap + a1t is a degree-1 polynomial.
® Sometimes higher-degree polynomials fit data better.

General form (degree < m):

p(t) = ao + art + axt® + -+ + ap_1t™

Called the Discrete Least Squares Problem because data points (t;,y;) are finite.
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Polynomial Basis and Vector Space

Set of polynomials of degree < m forms a vector space of dimension m.
Standard basis: ¢1(t) = 1, ¢2(t) = t,...,¢m(t) = t™ L.
Any p(t) can be written as:

p(t) = x161(t) + x2¢2(t) + - - - + XmPm(t)

Alternate bases may improve numerical stability.
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Matrix Form of the Problem

® For n data points and m basis functions:
Ax ~ b

where:
® Ac RMm, A,'J' = ¢j(t;),
® x ¢ R™: coefficient vector,
® pc R"™ vector of y; values.

e |f n > m, this is an **overdetermined system**.
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Least Squares Formulation

® \We seek x minimizing the residual:
r=b— Ax

® | east squares problem:
- 2 : 2
min |[rllz = min | x|l

® Includes fitting with:

® Polynomials,

® Trigonometric functions,
® Exponentials,

® Any basis functions ¢;(t).
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What Comes Next

® We will solve the least squares problem using:
® Normal equations: ATAx = ATh
® Orthogonal transformations: QR decomposition

® These techniques ensure numerical stability and efficient computation.
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Rotation in R?

® A rotation through angle 6 is a linear transformation:

Q- [cos@ —sin 0}

sinf cosf

e Acts on any vector x € R? by rotating it counterclockwise.

® This matrix is called a rotator.
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12/60



Properties of Rotators

e QTQ =1 Q is orthogonal.
e det(Q) =1
® Q71 =QT: inverse of a rotator is a rotation through —0.

® Rotators preserve:

® Vector norms: || Qx| = ||x||
® Angles between vectors

Gian
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Using Rotators to Create Zeros

® |et x = [XI} with x; # 0.
X2
® Find rotator @ such that:
T, _|Y
o= 3
® Choose: N N
cosf = ! sinf = 2

A _x
\/ X2+ X3 \/ X2+ X3

e This ensures cos2 6 +sin?6 = 1

Gian
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Geometric Interpretation

® For every x € R?, there exists a rotation matrix Q such that:

0Tx— [ng]

® |nterpretation: Rotating vector x onto the x-axis.

® This is a basic step in constructing the QR decomposition.

Gian
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Application to Matrices

e Let Aec R?%2, Then:
Q"TA=R

where R is upper triangular.

® Generalizes to A € R™": for such A, there exists an orthogonal matrix Q and an
upper triangular matrix R such that:

Q"TA=R

e This is the foundation of the **QR decomposition**.

Gian
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QR Decomposition

® For any matrix A € R™*" there exist:

® Q€ R™™ orthogonal
® R & R™*" upper triangular

such that:
A= QR

® QTA = R = transformation to upper triangular form

® Fundamental in solving least squares and linear systems
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Solving Linear Systems Using QR Decomposition

Given a QR decomposition: A = QR, where
® Q is orthogonal: QTQ =1/
® R is upper triangular

To solve Ax = b, rewrite as:
QRx =b

lety=Rx=Qy=b=y=Q"h
Now solve Rx = y via back substitution.
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Summary of the QR Method

1. Compute the QR decomposition: A = QR
2. Compute y = Q'b
3. Solve Rx = y using back substitution

QR decomposition is especially useful when A is full-rank but not square or poorly
conditioned for LU.
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Multiply both sides of Ax = b by QT:

Q"Ax=Q"h = Rx=c

Or, write A = QR, and:

QRx=b = Q(Rx)=b

In both cases:
c=Q"h, Rx=c

¢ Same method from two equivalent perspectives.

Gian
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Example: Solving a System Using QR Decomposition

We want to solve the system:
Ax =b, where A= [1 11] , b= [2]

Step 1: Construct Q and R.

1] . Now

Using vector x = [1

cosf =



Then:
R=QTA= [
Step 2: Solve Q' b=c¢
11
on-[4, 3]8-19
v vl 2
Step 3: Solve Rz = ¢ by back substitution

\/ééﬁ,:: V2=z21=1
\/522 = A*N/i =2z =-1
. 1
Solution: x = {1]
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Plane Rotators in R” (Givens Rotators)

A plane rotator is an n X n matrix that looks like the identity, except for a 2 x 2 rotation
block in rows and columns i and j.

Definition:

1

cosf --- —sinf
Q(’v./79) = . . : c RAXN

sinf --- cos0

where the 2 x 2 rotation is in rows and columns i and ;.

Properties:
e @ is orthogonal: QTR =1 .
e det(Q) =1 Gian

e Applying Q or QT to a vector alters only the i-th and j-th components 2360



Using a Plane Rotator to Zero an Entry

Given a vector

Xj

we choose ¢ and s such that:

Xij Xj . .- .
c=—~t— s=—39 = QTx has a zero in position j

)
/2 2 2 2
xi+><j x,.—l—xj
If xi=x;=0,usec=1,s5=0.

Only the i-th and j-th entries of x are modified. Gian
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Geometric Interpretation of a Plane Rotator

A plane rotator acts on vectors in R” by rotating only in the {x;, x;}-plane.

Key Idea: A vector x € R" can be uniquely decomposed as:

><:p+pl

® p lies in the x;xj-plane
e pl is orthogonal to the xixj-plane

Action of the Plane Rotator Q:
® Rotates p through angle 6 in the x;x;-plane
e Leaves p unchanged

Visualization

Only components of x along axes i and j are affected. All other components remain
unchanged.
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Theorem: QR Decomposition Using Rotators

Theorem: Let A € R™". Then there exists an orthogonal matrix @ and an upper
triangular matrix R such that

A= QR.
Proof Sketch:
e Construct Q as a product of plane rotators (Givens rotations).
e Apply rotators @1, @31, ..., Qn1 to zero out entries below aj; in column 1.

® These rotators only affect rows below the current pivot and preserve existing zeros
above.

Proceed to column 2:
® Apply Qs2, Qu2, - .., Qn2 to zero entries below ap;.

Repeat this process for columns 3 through n — 1.
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Q=Qnn1Q2Qmu- Qi1 R=Q'A
Since @ is a product of orthogonal matrices, @ itself is orthogonal.
Exercise Cost of QR Decomposition via Rotators Exercise: Show that the algorithm
sketched in the proof of Theorem takes O(n3) flops to transform A to R.

Analysis:
® For each column k =1 to n— 1, we apply Givens rotations to eliminate entries below
the diagonal.
® Number of Givens rotations per column: n — k.
® Each Givens rotation affects only two rows = it requires about 2(n — k) flops.

Total flop count:
n—1

B 2 _ —1)n(2n—-1)
> (n—k)-2(n—k 2Z(n—k) 221 .

k=1

= O(n®) flops GIan
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Reflectors: Geometric Definition

Goal: Construct a matrix Q that reflects any vector x € R? across a line £ through the
origin.
Let:

® v be a nonzero vector on the line ¢

® y be a unit vector orthogonal to ¢

® Any x € R? can be written as x = au + (v

Then:
Reflection through £: x+— —au+ Sv

Matrix Formulation:

® Let P = uu' where u is unit vector (|jull = 1)
® Define Q=1 —2P Gian
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Qx = (I —2uuT)x is the reflection of x across the hyperplane orthogonal to u

Properties
® Qis symmetric: Q= Q7
e Qis orthogonal: QT Q =1
e det(Q) = —1

Gian
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Proposition: Reflector Matrix

Let u € R"” be a nonzero vector. Define:

2
Q=1- —2uuT
[[ull3

Then Q is a reflector with the following properties:

() Qu=—u (Reflection inverts u)
(b) Qv = v for all v such that u’"v =0 (Orthogonal vectors remain unchanged)
Proof Sketch:

® Normalize u so that ||u[| =1= Q@ =/ —2uu”

® Then:

Qu=(l—2uuu=u—2u=—u
e IfuTv=0:
Qv:(l—2uuT)v: v—2u(uTV): v .
Gian
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Theorem : Reflecting x to y

Statement: Let x,y € R” with x # y and ||x||2 = ||y||2. Then there exists a unique
reflector Q such that:

Qx =y

Gian
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Theorem : Reflecting x to y

Statement: Let x,y € R” with x # y and ||x||2 = ||y||2. Then there exists a unique
reflector Q such that:

Qx =y
Construction: Let v = x — y, then define:

2
e
Q=1 Tup

Gian
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Theorem : Reflecting x to y

Statement: Let x,y € R” with x # y and ||x||2 = ||y||2. Then there exists a unique
reflector Q such that:

Qx =y
Construction: Let v = x — y, then define:

2
e
Q=1 Tup

Proof Sketch:
® Decompose x as:

x= S0k y) + 50— )

® Note: x — y = u and x + y is orthogonal to u since:
T 2 2
(x=y) (x+y)=IxI"=llyl*=0

* Apply @ Gian
Qx—y) = —u=y —x |

AL N o e e\ 31/60



® Thus:

. Xty Xx-—y _x+y_x—y_
QX_Q<2+2)_2 2 7

Gian
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Reflector Mapping

Statement: Let x € R"” be any nonzero vector. Then there exists a reflector Q such

that:
£[x|l2

0
QX:y:

Gian
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Reflector Mapping

Statement: Let x € R"” be any nonzero vector. Then there exists a reflector Q such

that:
£[x|l2
0
QX ey y fry :
0
Proof:

® lety =[-r,0,...,0]7 with r = £||x]|.
Choose the sign of r so that x # y.

Then [|x|2 = [|y|l2-
By Theorem 3.2.30, there exists a reflector Q such that Qx = y.

Gian
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Reflector Mapping

Statement: Let x € R"” be any nonzero vector. Then there exists a reflector Q such

that:
£[x|l2
0
QX ey y fry :
0
Proof:

® lety =[-r,0,...,0]7 with r = £||x]|.
Choose the sign of r so that x # y.

Then [|x|2 = [|y|l2-
® By Theorem 3.2.30, there exists a reflector @ such that Qx = y.

Note: Any nonzero vector can be reflected to a scalar multiple of the first standard basis
vector. This is useful in QR factorization via Householder transformations.
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Example: Stable Computation of ||x||»

Problem: Compute ||x||2 on a computer that underflows at 10710 Assume each
component of x is smaller than 1071° = all are set to zero.

Gian

34/60



Example: Stable Computation of ||x||»

Problem: Compute ||x||2 on a computer that underflows at 10710 Assume each
component of x is smaller than 1071° = all are set to zero.

Result:
Ix][2=10 (incorrect!)

True norm: nonzero — error 5
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Example: Stable Computation of ||x||»

Problem: Compute ||x||2 on a computer that underflows at 10710 Assume each
component of x is smaller than 1071° = all are set to zero.
Result:

IIx|l2 =0 (incorrect!)

True norm: nonzero — error 5
Solution: Scaling Procedure

* Let B = maxi<i<n|xi|

e If 5=0, then ||x|2 =0
® FElse, scale: x = %z
[ ]

Then compute: ||z|l2 = 8- [|x]|2
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Example: Stable Computation of ||x||»

Problem: Compute ||x||2 on a computer that underflows at 10710 Assume each
component of x is smaller than 1071° = all are set to zero.
Result:

IIx|l2 =0 (incorrect!)

True norm: nonzero — error 5
Solution: Scaling Procedure

® |et B = maxi<i<n ’X,"
If 5 =0, then ||x|][2 =0

Else, scale: x = %z

® Then compute: ||z]2 = 5 - ||x]|2
Why It Works:
® |xj| <1 — avoids overflow
® Tiny terms may still underflow but can be ignored safely Eian

® Final norm is rescaled — correct magnitude
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Efficient Application of a Reflector @

Context: When computing QR decomposition using reflectors, we apply

T

Q@=1!—~uu' toamatrix BeR™"

Gian
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Efficient Application of a Reflector @

Context: When computing QR decomposition using reflectors, we apply

T

Q@=1!—~uu' toamatrix BeR™"

Goal: Compute QB = (I — yuuT)B = B — yuu' B efficiently without forming @
explicitly.

Gian
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Efficient Application of a Reflector @

Context: When computing QR decomposition using reflectors, we apply

T

Q@=1!—~uu' toamatrix BeR™"

Goal: Compute QB = (I — yuuT)B = B — yuu' B efficiently without forming @
explicitly.
Efficient Strategy:
® |et vT:7uT2>QB:B—uvTB
e Compute v' B € RI*™
® Then compute outer product: u(v’B) € R™™
Subtract: @B = B — u(v'B)

Gian
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Exercise: Efficient Computation of @B = (I — yuu™)B

Let u € R", v € R", B € R™™. We compare flop counts for different computational
strategies.

Gian
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Exercise: Efficient Computation of @B = (I — yuu™)B

Let u € R", v € R", B € R™™. We compare flop counts for different computational
strategies.
(a) Compute (uv")B:

e uv’ € R™" costs n? flops

e Multiply with B € R"™*™ costs 2n’°m flops

e Total: ~ 2n°m flops

® Requires full n x n intermediate matrix

Gian
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Exercise: Efficient Computation of @B = (I — yuu™)B

Let u € R", v € R", B € R™™. We compare flop counts for different computational
strategies.
(a) Compute (uv")B:
e uv’ € R™" costs n? flops
e Multiply with B € R"™*™ costs 2n’°m flops
e Total: ~ 2n°m flops
® Requires full n x n intermediate matrix
(b) Compute u(v'B):
e v B e R*™ costs nm flops
e u(vTB) € R™™ costs 2nm flops
® Total: nm + 2nm = 3nm flops
® Much cheaper in both time and storage Eian
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(c) Compute QB = B — yu(v' B):
® From (b), u(vT B): 3nm flops
e Subtraction: B — (-): nm flops

e Total: 3nm + nm = 4nm flops

Gian
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(c) Compute QB = B — yu(v' B):
® From (b), u(vT B): 3nm flops
e Subtraction: B — (-): nm flops
e Total: 3nm + nm = 4nm flops
(d) Compute QB using full matrix Q € R™*":
e Full matrix multiplication: QB costs 2n°m flops

® Much more expensive

Gian
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Theorem: Uniqueness of the QR Decomposition

Theorem 3.2.46: Let A € R"*" be a nonsingular matrix. Then there exist unique
matrices Q, R € R™" such that:

e Qis orthogonal (RTQ =)
® R is upper triangular with positive diagonal entries
e A=QR

Gian
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Proof Sketch: Existence

e By Theorem 3.2.20, we know that A = QR for orthogonal Q and upper triangular R
(diagonal entries may not be positive).

® Define a diagonal matrix D such that D;; = sign(l-%,-,-).
® Then define:
Q=Q@D, R=D'R

® D is orthogonal (since D! = DT = D), so Q remains orthogonal and R is upper
triangular with positive diagonal entries.

Gian

39/60



Proof Sketch: Uniqueness

Assume A = Q1 R1 = Q2 R> where:
® 1, @ are orthogonal

® Ry, R are upper triangular with positive diagonal entries

Then:
ATA=R/ Q] QRi = R/ R,
ATA=R) Ry
e AT A is symmetric positive definite

R; and R, are both Cholesky factors of AT A
® By uniqueness of the Cholesky decomposition: Ry = R»
Then Q; = @, follows from @ = AR™1

Gian
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QR Decomposition with MATLAB

MATLAB’s gr function performs QR decomposition:
A= QR

Q is orthogonal, R is upper triangular.

Matlab Code n = 7; A = randn(n); [Q, R] = qr(A);
Q'*Q norm(eye(n) - Q"*Q) norm(A - Q*R)

Gian

41/60



Observations from Output

¢ Orthogonality:
Q"Q~ I = norm(eye(n) - Q’*Q) <1

® Accuracy of Factorization:
A=~ QR = norm(A - Q*R) < 1

e Diagonal of R: Entries on the diagonal of R are not necessarily positive.

® MATLAB does not enforce this by default
® Positive diagonals are needed only for uniqueness

Gian
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Conclusion

® MATLAB's gr is efficient and numerically stable.
® Orthogonality and reconstruction errors are typically small.
® Diagonal signs in R are not fixed by MATLAB.

Explore further: help gr

Gian
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Numerical Stability of Rotators and Reflectors

Wilkinson's analysis (see Wilkinson [81, pp. 126-162]) shows that:
® Both rotators (Givens rotations) and reflectors (Householder matrices) are
numerically stable.
® They are used to construct orthogonal matrices @ for QR decomposition.

® When applied to a matrix A, they produce a small backward error:

IE]2

<1
[All2

QA= Q(A+E), with

Interpretation: The computed result is the exact result for a slightly perturbed input.

Gian

44/ 60



Stability Under Repeated Application

Applying multiple orthogonal transformations:

1Ell2

QA= QQA+ E, where
[All2

<1

This follows from:
QA = Qi1(A+ E1), Q@) = Q1A+ QE + B

Then:
E=QE +E, =|El2<|El2+][El-2

Conclusion: The backward error remains small after multiple applications.

Gian
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Note on Stability

® Both Givens and Householder transformations are normwise backward stable.
® Errors accumulate slowly: ||E||2/||Al|2 remains small.
® QR decomposition using orthogonal transformations is highly reliable numerically.

Implication: QR-based methods are robust and suitable for solving least squares
problems.

Gian
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Definition of Complex Rotator

Let z € C, z # 0. Define

® Goal: Show that U is unitary
¢ and det(U) =1

Gian
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(a) U is Unitary

_ 1 [z 2]z 2] _ 1 [lzlP+ 2P o 1_,
oz =lzl z2f 2 oz |z 0 122+ |2)2| T

Conclusion: U is unitary.

Gian
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(b) Determinant of U

Use the formula for determinant of a 2 X 2 matrix:

1 z —lz 1 1
det(U) = — det [ | q = —(z-z+2]*) = Wﬂz\z +1z) =1

22 2zl 2 2|2

Conclusion: det(U) =1

Gian
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Extension to C"*"

Note: Complex rotators are building blocks for stable algorithms in the complex domain.

Gian
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(a) Existence of Complex Reflector

Given x,y € C", with x # y, ||x]2 = |ly||2, and (x,y) € R.
Claim: There exists a unitary matrix @ of the form:

Q=1—puu*, BeC, ueC"

such that Qx = y.

Gian
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Theorem (Complex QR Decomposition)

Let A € C™" be nonsingular.

Then: There exist unique matrices @, R € C"™" such that:
® @ isunitary: Q*Q =1,
® R is upper triangular with real, positive entries on the diagonal,
e A=QR.

Gian
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Theorem (Complex QR Decomposition)

Let A € C™" be nonsingular.

Then: There exist unique matrices @, R € C"™" such that:
® @ isunitary: Q*Q =1,
® R is upper triangular with real, positive entries on the diagonal,
e A=QR.

Uniqueness: If A= Q1R1 = @R, with both Ry, R, having real, positive diagonals and
@1, Q> unitary, then:
Q=0 R=FR

Gian
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MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

n = 4;

A = randn(n) + 1i * randn(n); % Complex matrix

[Q, R] = qr(A); % QR decomposition

Q’ % Conjugate transpose of Q
Q’*Q % Should be the identity
norm(eye(n) - Q’*Q) % Should be near zero

norm(A - Q*R) % Should be near zero )

Gian
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MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

n = 4;
A = randn(n) + 1i * randn(n); % Complex matrix
% QR decomposition

[Q, R] = qr(A);

% Conjugate transpose of Q

Q)
Q’*Q % Should be the identity
norm(eye(n) - Q’*Q) % Should be near zero

norm(A - Q*R) % Should be near zero )

Observations:
® Qisunitary: Q*Q =~/
® A= QR: small residual |A— QR|| Gial'l
e MATLAB handles complex matrices naturally '
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Theorem 3.3.3 (Rectangular QR Decomposition)

Let A€ R"™™ with n > m (i.e., a tall matrix).

Then there exist:
® An orthogonal matrix Q € R™*", such that QT Q =1/,
® A matrix R € R™™, of the form:

R= [g] ., where R € R™™ is upper triangular

such that:
A= QR

Gian
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Theorem 3.3.3 (Rectangular QR Decomposition)

Let A€ R"™™ with n > m (i.e., a tall matrix).

Then there exist:
® An orthogonal matrix Q € R™*", such that QT Q =1/,
® A matrix R € R™™, of the form:

R= [g] ., where R € R™™ is upper triangular

such that:
A=QR
Summary:
® (Q: orthogonal basis for R”
® R: upper-trapezoidal (first m rows upper triangular, rest zero) Eian
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Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n x m matrix
A using Householder reflectors is approximately:

Flops &~ 2nm? — §m3

Gian
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Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n x m matrix
A using Householder reflectors is approximately:

2
Flops ~ 2nm? — §m3

Sketch of Derivation:
® For each of the m Householder steps:
® Reflector formation: ~ 2(n — k + 1) flops
® Apply reflector to trailing submatrix of size (n — k + 1) x (m — k)
® Cost per step: ~ 2(n— k+ 1)(m — k)
e Total flops:

- 2
Z2n—k+ m—k)z2nm2—§m3
k=1

Gian
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Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an n x m matrix
A using Householder reflectors is approximately:

2
Flops ~ 2nm? — §m3

Sketch of Derivation:
® For each of the m Householder steps:
® Reflector formation: ~ 2(n — k + 1) flops
® Apply reflector to trailing submatrix of size (n — k + 1) x (m — k)
® Cost per step: ~ 2(n— k+ 1)(m — k)
e Total flops:

- 2
Z2n—k+ m—k)z2nm2—§m3
k=1

Interpretation:

Gian
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Thic ic linear in n and Aarradratic in m



QR Decomposition and Full Rank

Let A€ R™™ with n > m. The QR decomposition:
A= QR

with @ € R™ " orthogonal and R € R"™ ™ (upper trapezoidal), helps in solving the least
squares problem:
min ||Ax — b||2
X

Gian
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QR Decomposition and Full Rank

Let A€ R™™ with n > m. The QR decomposition:
A= QR

with @ € R™ " orthogonal and R € R"™ ™ (upper trapezoidal), helps in solving the least
squares problem:
min ||Ax — b||2

Key Insight: Rank and Usefulness

® rank(A) = rank(R)

R = QT A= rank(R) < rank(A)
* A= QR = rank(A) < rank(R)
® Therefore, ’rank( )= rank(R)‘

Gian
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QR Decomposition and Full Rank

Let A€ R™™ with n > m. The QR decomposition:
A= QR

with @ € R™ " orthogonal and R € R"™ ™ (upper trapezoidal), helps in solving the least
squares problem:
min ||Ax — b||2

Key Insight: Rank and Usefulness

® rank(A) = rank(R)

R = QT A= rank(R) < rank(A)
* A= QR = rank(A) < rank(R)
® Therefore, ’rank( )= rank(R)‘

Conclusion:
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® A has full rank < R is nonsingular (i.e., invertible)



Theorem (Least Squares via QR)

Let Ac R™™ b e R", with n > m, and suppose that A has full rank.

Then the least squares problem:

in [|Ax — b
min [|Ax — bl2

has a unique solution, given as follows:
® Compute the QR decomposition: A = QR, where

Q € R"™" (orthogonal), R = [ﬂ , R eR™ (upper triangular)

e Let c = Q7 b, and define & € R™ as the first m entries of ¢

® Solve the system:
Rx=2¢
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Theorem (Least Squares via QR)

Let Ac R™™ b e R", with n > m, and suppose that A has full rank.

Then the least squares problem:

in [|Ax — b
min [|Ax — bl2

has a unique solution, given as follows:
® Compute the QR decomposition: A = QR, where

Q € R"™" (orthogonal), R = [ﬂ , R eR™ (upper triangular)

e Let c = Q7 b, and define & € R™ as the first m entries of ¢
® Solve the system:

Rx=¢
Conclusion: The solution to the least squares problem is
[ ]
x=R1e Gian
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MATLAB Example: Least Squares via QR

Given: Overdetermined system Ax = b, where A € R>*3

MATLAB Code

n=>5; m= 3;
A = randn(n, m);
b = randn(n, 1);

[Q, R_full]l = qr(A);
R = R_full(i:m, 1:m);
c =Q *x b;

c_hat = c(1:m);

x = R \ c_hat;

residual_norm = norm(A*x - b)
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Thank You |
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