GIAN Course on Solving Linear Systems and Computing Generalized Inverses Using Recurrent Neural Networks

June 09-19, 2025, IIT Indore,

(The Least Squares Problem and QR Decompostion)

Overview

Topics Covered:

- 1. Description of the Least Squares Problem
- 2. Rotators, Reflectors, and the QR Decomposition
- 3. Solving Least Squares via QR Decomposition
- 4. Gram-Schmidt Orthonormalization
 - Relation to QR decomposition
 - Computational variants
- 5. Theoretical Foundations (postponed for clarity)
- 6. Updating the QR Decomposition
 - When rows/columns are added or deleted

Motivation

Why Least Squares?

- Many real-world problems involve inconsistent systems of equations
- We seek an approximate solution that minimizes the error
- Leads to the problem:

$$\min_{x} \|Ax - b\|_2$$

Motivation

Why Least Squares?

- Many real-world problems involve inconsistent systems of equations
- We seek an approximate solution that minimizes the error
- Leads to the problem:

$$\min_{x} \|Ax - b\|_2$$

Applications:

- Data fitting
- Signal processing
- Machine learning
- Control systems

The Discrete Least Squares Problem

• Given a set of data points (t_i, y_i) for i = 1, ..., n, we seek a line

$$p(t) = a_0 + a_1 t$$

that fits the data.

- In general, the data does not lie exactly on a line \Rightarrow no exact solution.
- We define the residuals:

$$r_i = y_i - p(t_i)$$

and consider the residual vector $\mathbf{r} = [r_1, \dots, r_n]^T$.

Least Squares Formulation

- We seek p(t) that minimizes the residual norm $\|\mathbf{r}\|$.
- Different norms lead to different problems:
 - 1-norm: $\|\mathbf{r}\|_1 = \sum |r_i|$
 - ∞ -norm: $\|\mathbf{r}\|_{\infty} = \max |r_i|$
 - 2-norm (Euclidean): $\|\mathbf{r}\|_2 = \sqrt{\sum r_i^2}$
- The most widely used and best understood is the **least squares** approach:

$$\min_{a_0,a_1} \|\mathbf{r}\|_2^2 = \sum_{i=1}^n (y_i - a_0 - a_1 t_i)^2$$

Statistical Justification for Least Squares

- If measurement errors in y_i are:
 - Independent,
 - Normally distributed,
 - Mean zero, constant variance σ^2 .

then minimizing $||r||_2^2$ gives the **Maximum Likelihood Estimator (MLE)**.

• Justifies use of 2-norm in least squares problems.

Polynomial Approximation

- A straight line: $p(t) = a_0 + a_1 t$ is a degree-1 polynomial.
- Sometimes higher-degree polynomials fit data better.
- General form (degree < m):

$$p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_{m-1}t^{m-1}$$

• Called the **Discrete Least Squares Problem** because data points (t_i, y_i) are finite.

Polynomial Basis and Vector Space

- Set of polynomials of degree < m forms a vector space of dimension m.
- Standard basis: $\phi_1(t) = 1, \phi_2(t) = t, \dots, \phi_m(t) = t^{m-1}$.
- Any p(t) can be written as:

$$p(t) = x_1\phi_1(t) + x_2\phi_2(t) + \cdots + x_m\phi_m(t)$$

Alternate bases may improve numerical stability.

Matrix Form of the Problem

• For *n* data points and *m* basis functions:

 $Ax \approx b$

where:

- $A \in \mathbb{R}^{n \times m}$, $A_{ij} = \phi_j(t_i)$,
- $x \in \mathbb{R}^m$: coefficient vector,
- $b \in \mathbb{R}^n$: vector of y_i values.
- If n > m, this is an **overdetermined system**.

Least Squares Formulation

• We seek *x* minimizing the residual:

$$r = b - Ax$$

• Least squares problem:

$$\min_{x \in \mathbb{R}^m} \|r\|_2^2 = \min_{x} \|b - Ax\|_2^2$$

- Includes fitting with:
 - Polynomials,
 - Trigonometric functions,
 - Exponentials,
 - Any basis functions $\phi_j(t)$.

What Comes Next

- We will solve the least squares problem using:
 - Normal equations: $A^TAx = A^Tb$
 - Orthogonal transformations: QR decomposition
- These techniques ensure numerical stability and efficient computation.

Rotation in \mathbb{R}^2

• A rotation through angle θ is a linear transformation:

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Acts on any vector $x \in \mathbb{R}^2$ by rotating it counterclockwise.
- This matrix is called a rotator.

Properties of Rotators

- $Q^TQ = I$ Q is orthogonal.
- det(Q) = 1
- $Q^{-1} = Q^T$: inverse of a rotator is a rotation through $-\theta$.
- Rotators preserve:
 - Vector norms: ||Qx|| = ||x||
 - Angles between vectors

Using Rotators to Create Zeros

- Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, with $x_1 \neq 0$.
- Find rotator Q such that:

$$Q^T x = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

Choose:

$$\cos \theta = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad \sin \theta = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}$$

• This ensures $\cos^2 \theta + \sin^2 \theta = 1$

Geometric Interpretation

• For every $x \in \mathbb{R}^2$, there exists a rotation matrix Q such that:

$$Q^T x = \begin{bmatrix} \|x\| \\ 0 \end{bmatrix}$$

- Interpretation: Rotating vector x onto the x-axis.
- This is a basic step in constructing the QR decomposition.

Application to Matrices

• Let $A \in \mathbb{R}^{2 \times 2}$. Then:

$$Q^T A = R$$

where R is upper triangular.

• Generalizes to $A \in \mathbb{R}^{n \times n}$: for such A, there exists an orthogonal matrix Q and an upper triangular matrix R such that:

$$Q^T A = R$$

• This is the foundation of the **QR decomposition**.

QR Decomposition

- For any matrix $A \in \mathbb{R}^{m \times n}$, there exist:
 - $Q \in \mathbb{R}^{m \times m}$ orthogonal
 - ullet $R \in \mathbb{R}^{m imes n}$ upper triangular

such that:

$$A = QR$$

- $Q^T A = R \Rightarrow$ transformation to upper triangular form
- Fundamental in solving least squares and linear systems

Solving Linear Systems Using QR Decomposition

- Given a QR decomposition: A = QR, where
 - Q is orthogonal: $Q^TQ = I$
 - R is upper triangular
- To solve Ax = b, rewrite as:

$$QRx = b$$

- Let $y = Rx \Rightarrow Qy = b \Rightarrow y = Q^T b$
- Now solve Rx = y via back substitution.

Summary of the QR Method

- 1. Compute the QR decomposition: A = QR
- 2. Compute $y = Q^T b$
- 3. Solve Rx = y using back substitution

Advantage

QR decomposition is especially useful when A is full-rank but not square or poorly conditioned for LU.

Two Viewpoints

• Multiply both sides of Ax = b by Q^T :

$$Q^T A x = Q^T b \quad \Rightarrow \quad R x = c$$

• Or, write A = QR, and:

$$QRx = b \Rightarrow Q(Rx) = b$$

• In both cases:

$$c = Q^T b$$
, $Rx = c$

Same method from two equivalent perspectives.

Example: Solving a System Using QR Decomposition

We want to solve the system:

$$Ax = b$$
, where $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

Step 1: Construct Q and R.

Using vector
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Now

$$\cos \theta = \frac{1}{\sqrt{2}}, \quad \sin \theta = \frac{1}{\sqrt{2}} \Rightarrow Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Then:

$$R = Q^T A = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix}$$

Step 2: Solve $Q^Tb = c$

$$c = Q^T b = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \end{bmatrix}$$

Step 3: Solve Rz = c by back substitution

$$\sqrt{2}z_1 = \sqrt{2} \Rightarrow z_1 = 1$$

$$\sqrt{2}z_2 = -\sqrt{2} \Rightarrow z_2 = -1$$

Solution:
$$x = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Plane Rotators in \mathbb{R}^n (Givens Rotators)

A **plane rotator** is an $n \times n$ matrix that looks like the identity, except for a 2×2 rotation block in rows and columns i and j.

Definition:

where the 2×2 rotation is in rows and columns i and j.

Properties:

- Q is orthogonal: $Q^TQ = I$
- $\det(Q) = 1$
- Applying Q or Q^T to a vector alters only the *i*-th and *j*-th components

Using a Plane Rotator to Zero an Entry

Given a vector

$$x = \begin{bmatrix} \vdots \\ x_i \\ \vdots \\ x_j \\ \vdots \end{bmatrix} \in \mathbb{R}^n$$

we choose c and s such that:

$$c = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad s = \frac{x_j}{\sqrt{x_i^2 + x_j^2}} \Rightarrow Q^T x$$
 has a zero in position j

If
$$x_i = x_i = 0$$
, use $c = 1$, $s = 0$.

Only the i-th and j-th entries of x are modified.

Geometric Interpretation of a Plane Rotator

A plane rotator acts on vectors in \mathbb{R}^n by rotating only in the $\{x_i, x_j\}$ -plane.

Key Idea: A vector $x \in \mathbb{R}^n$ can be uniquely decomposed as:

$$x = p + p^{\perp}$$

- p lies in the $x_i x_j$ -plane
- p^{\perp} is orthogonal to the $x_i x_i$ -plane

Action of the Plane Rotator Q:

- Rotates p through angle θ in the $x_i x_i$ -plane
- Leaves p^{\perp} unchanged

Visualization

Only components of x along axes i and j are affected. All other components remain unchanged.

Theorem: QR Decomposition Using Rotators

Theorem: Let $A \in \mathbb{R}^{n \times n}$. Then there exists an orthogonal matrix Q and an upper triangular matrix R such that

$$A = QR$$
.

Proof Sketch:

- Construct *Q* as a product of *plane rotators* (Givens rotations).
- Apply rotators $Q_{21}, Q_{31}, \ldots, Q_{n1}$ to zero out entries below a_{11} in column 1.
- These rotators only affect rows below the current pivot and preserve existing zeros above.
- Proceed to column 2:
 - Apply $Q_{32}, Q_{42}, \ldots, Q_{n2}$ to zero entries below a_{22} .
- Repeat this process for columns 3 through n-1.

$$Q = Q_{n,n-1} \cdots Q_{32} Q_{n1} \cdots Q_{21}, \quad R = Q^{\top} A$$

Since Q is a product of orthogonal matrices, Q itself is orthogonal.

Exercise Cost of QR Decomposition via Rotators **Exercise**: Show that the algorithm sketched in the proof of Theorem takes $\mathcal{O}(n^3)$ flops to transform A to R.

Analysis:

- For each column k = 1 to n 1, we apply Givens rotations to eliminate entries below the diagonal.
- Number of Givens rotations per column: n k.
- Each Givens rotation affects only two rows \Rightarrow it requires about 2(n-k) flops.

Total flop count:

$$\sum_{k=1}^{n-1} (n-k) \cdot 2(n-k) = 2\sum_{k=1}^{n-1} (n-k)^2 = 2\sum_{i=1}^{n-1} j^2 = 2 \cdot \frac{(n-1)n(2n-1)}{6}$$

$$\Rightarrow \mathcal{O}(n^3)$$
 flops

Reflectors: Geometric Definition

Goal: Construct a matrix Q that reflects any vector $x \in \mathbb{R}^2$ across a line ℓ through the origin.

Let:

- v be a nonzero vector on the line ℓ
- u be a unit vector orthogonal to ℓ
- Any $x \in \mathbb{R}^2$ can be written as $x = \alpha u + \beta v$

Then:

Reflection through
$$\ell$$
: $x \mapsto -\alpha u + \beta v$

Matrix Formulation:

- Let $P = uu^T$ where u is unit vector $(||u||_2 = 1)$
- Define Q = I 2P

 $Qx = (I - 2uu^T)x$ is the reflection of x across the hyperplane orthogonal to u

Properties

- Q is symmetric: $Q = Q^T$
- Q is orthogonal: $Q^TQ = I$
- $\det(Q) = -1$

Proposition: Reflector Matrix

Let $u \in \mathbb{R}^n$ be a nonzero vector. Define:

$$Q = I - \frac{2}{\|u\|_2^2} u u^T$$

Then Q is a **reflector** with the following properties:

(a)
$$Qu = -u$$
 (Reflection inverts u)

(b)
$$Qv = v$$
 for all v such that $u^T v = 0$ (Orthogonal vectors remain unchanged)

Proof Sketch:

- Normalize u so that $||u|| = 1 \Rightarrow Q = I 2uu^T$
- Then:

$$Qu = (I - 2uu^T)u = u - 2u = -u$$

• If $u^T v = 0$:

$$Qv = (I - 2uu^T)v = v - 2u(u^Tv) = v$$

Conclusion: Q reflects vectors through the hyperplane orthogonal to u

Theorem : Reflecting x to y

Statement: Let $x, y \in \mathbb{R}^n$ with $x \neq y$ and $||x||_2 = ||y||_2$. Then there exists a unique **reflector** Q such that:

$$Qx = y$$

Theorem : Reflecting x to y

Statement: Let $x, y \in \mathbb{R}^n$ with $x \neq y$ and $||x||_2 = ||y||_2$. Then there exists a unique **reflector** Q such that:

$$Qx = y$$

Construction: Let u = x - y, then define:

$$Q = I - \frac{2}{\|u\|^2} u u^T$$

Theorem : Reflecting x to y

Statement: Let $x, y \in \mathbb{R}^n$ with $x \neq y$ and $||x||_2 = ||y||_2$. Then there exists a unique **reflector** Q such that:

$$Qx = y$$

Construction: Let u = x - y, then define:

$$Q = I - \frac{2}{\|u\|^2} u u^T$$

Proof Sketch:

• Decompose *x* as:

$$x = \frac{1}{2}(x+y) + \frac{1}{2}(x-y)$$

• Note: x - y = u and x + y is orthogonal to u since:

$$(x-y)^T(x+y) = ||x||^2 - ||y||^2 = 0$$

• Apply *Q*:

Q(x-y)=-u=y-x

• Thus:

$$Qx = Q\left(\frac{x+y}{2} + \frac{x-y}{2}\right) = \frac{x+y}{2} - \frac{x-y}{2} = y$$

Reflector Mapping

Statement: Let $x \in \mathbb{R}^n$ be any nonzero vector. Then there exists a **reflector** Q such that:

$$Qx = y = \begin{bmatrix} \pm ||x||_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Reflector Mapping

Statement: Let $x \in \mathbb{R}^n$ be any nonzero vector. Then there exists a **reflector** Q such that:

$$Qx = y = \begin{bmatrix} \pm ||x||_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Proof:

- Let $y = [-r, 0, ..., 0]^T$ with $r = \pm ||x||_2$.
- Choose the sign of r so that $x \neq y$.
- Then $||x||_2 = ||y||_2$.
- By Theorem 3.2.30, there exists a reflector Q such that Qx = y.

Reflector Mapping

Statement: Let $x \in \mathbb{R}^n$ be any nonzero vector. Then there exists a **reflector** Q such that:

$$Qx = y = \begin{bmatrix} \pm ||x||_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Proof:

- Let $y = [-r, 0, ..., 0]^T$ with $r = \pm ||x||_2$.
- Choose the sign of r so that $x \neq y$.
- Then $||x||_2 = ||y||_2$.
- By Theorem 3.2.30, there exists a reflector Q such that Qx = y.

Note: Any nonzero vector can be reflected to a scalar multiple of the first standard basis vector. This is useful in QR factorization via Householder transformations.

Problem: Compute $||x||_2$ on a computer that underflows at 10^{-10} . Assume each component of x is smaller than $10^{-10} \Rightarrow$ all are set to zero.

Problem: Compute $||x||_2$ on a computer that underflows at 10^{-10} . Assume each component of x is smaller than $10^{-10} \Rightarrow$ all are set to zero.

Result:

$$||x||_2 = 0$$
 (incorrect!)

True norm: nonzero \rightarrow error 5

Problem: Compute $||x||_2$ on a computer that underflows at 10^{-10} . Assume each component of x is smaller than $10^{-10} \Rightarrow$ all are set to zero.

Result:

$$||x||_2 = 0$$
 (incorrect!)

True norm: nonzero \rightarrow error 5 Solution: Scaling Procedure

- Let $\beta = \max_{1 \le i \le n} |x_i|$
- If $\beta = 0$, then $||x||_2 = 0$
- Else, scale: $x = \frac{1}{\beta}z$
- Then compute: $||z||_2 = \beta \cdot ||x||_2$

Problem: Compute $||x||_2$ on a computer that underflows at 10^{-10} . Assume each component of x is smaller than $10^{-10} \Rightarrow$ all are set to zero.

Result:

$$||x||_2 = 0$$
 (incorrect!)

True norm: nonzero → error 5 **Solution: Scaling Procedure**

- Let $\beta = \max_{1 \le i \le n} |x_i|$
- If $\beta = 0$, then $||x||_2 = 0$
- Else, scale: $x = \frac{1}{\beta}z$
- Then compute: $||z||_2 = \beta \cdot ||x||_2$

Why It Works:

- $|x_i| < 1 \rightarrow \text{avoids overflow}$
- Tiny terms may still underflow but can be ignored safely
- ullet Final norm is rescaled o correct magnitude

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

$$Q = I - \gamma u u^T$$
 to a matrix $B \in \mathbb{R}^{n \times m}$

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

$$Q = I - \gamma u u^T$$
 to a matrix $B \in \mathbb{R}^{n \times m}$

Goal: Compute $QB = (I - \gamma uu^T)B = B - \gamma uu^TB$ efficiently without forming Q explicitly.

Efficient Application of a Reflector Q

Context: When computing QR decomposition using reflectors, we apply

$$Q = I - \gamma u u^T$$
 to a matrix $B \in \mathbb{R}^{n \times m}$

Goal: Compute $QB = (I - \gamma uu^T)B = B - \gamma uu^TB$ efficiently without forming Q explicitly.

Efficient Strategy:

- Let $v^T = \gamma u^T \Rightarrow QB = B uv^T B$
- Compute $v^T B \in \mathbb{R}^{1 \times m}$
- Then compute outer product: $u(v^T B) \in \mathbb{R}^{n \times m}$
- Subtract: $QB = B u(v^T B)$

Exercise: Efficient Computation of $QB = (I - \gamma uu^T)B$

Let $u \in \mathbb{R}^n$, $v \in \mathbb{R}^n$, $B \in \mathbb{R}^{n \times m}$. We compare flop counts for different computational strategies.

Exercise: Efficient Computation of $QB = (I - \gamma uu^T)B$

Let $u \in \mathbb{R}^n$, $v \in \mathbb{R}^n$, $B \in \mathbb{R}^{n \times m}$. We compare flop counts for different computational strategies.

(a) Compute $(uv^T)B$:

- $uv^T \in \mathbb{R}^{n \times n}$ costs n^2 flops
- Multiply with $B \in \mathbb{R}^{n \times m}$ costs $2n^2m$ flops
- **Total:** $\approx 2n^2m$ flops
- **Requires** full $n \times n$ intermediate matrix

Exercise: Efficient Computation of $\overline{QB} = (I - \gamma uu^T)B$

Let $u \in \mathbb{R}^n$, $v \in \mathbb{R}^n$, $B \in \mathbb{R}^{n \times m}$. We compare flop counts for different computational strategies.

- (a) Compute $(uv^T)B$:
 - $uv^T \in \mathbb{R}^{n \times n}$ costs n^2 flops
 - Multiply with $B \in \mathbb{R}^{n \times m}$ costs $2n^2m$ flops
 - **Total:** $\approx 2n^2m$ flops
 - **Requires** full $n \times n$ intermediate matrix
- **(b)** Compute $u(v^TB)$:
 - $v^T B \in \mathbb{R}^{1 \times m}$ costs nm flops
 - $u(v^T B) \in \mathbb{R}^{n \times m}$ costs 2nm flops
 - Total: nm + 2nm = 3nm flops
 - Much cheaper in both time and storage

(c) Compute $QB = B - \gamma u(v^T B)$:

- From (b), $u(v^TB)$: 3nm flops
- Subtraction: $B (\cdot)$: nm flops
- Total: 3nm + nm = 4nm flops

(c) Compute $QB = B - \gamma u(v^T B)$:

- From (b), $u(v^TB)$: 3nm flops
- Subtraction: $B (\cdot)$: nm flops
- Total: 3nm + nm = 4nm flops

(d) Compute QB using full matrix $Q \in \mathbb{R}^{n \times n}$:

- Full matrix multiplication: QB costs $2n^2m$ flops
- Much more expensive

Theorem: Uniqueness of the QR Decomposition

Theorem 3.2.46: Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Then there exist unique matrices $Q, R \in \mathbb{R}^{n \times n}$ such that:

- Q is orthogonal $(Q^{\top}Q = I)$
- R is upper triangular with positive diagonal entries
- A = QR

Proof Sketch: Existence

- By Theorem 3.2.20, we know that $A = \tilde{Q}\tilde{R}$ for orthogonal \tilde{Q} and upper triangular \tilde{R} (diagonal entries may not be positive).
- Define a diagonal matrix D such that $D_{ii} = \text{sign}(\tilde{R}_{ii})$.
- Then define:

$$Q = \tilde{Q}D, \quad R = D^{-1}\tilde{R}$$

• D is orthogonal (since $D^{-1} = D^{\top} = D$), so Q remains orthogonal and R is upper triangular with positive diagonal entries.

Proof Sketch: Uniqueness

Assume $A = Q_1R_1 = Q_2R_2$ where:

- Q_1, Q_2 are orthogonal
- R_1, R_2 are upper triangular with positive diagonal entries

Then:

$$A^{\top}A = R_1^{\top} Q_1^{\top} Q_1 R_1 = R_1^{\top} R_1$$

 $A^{\top}A = R_2^{\top} R_2$

- $A^{T}A$ is symmetric positive definite
- R_1 and R_2 are both Cholesky factors of $A^{\top}A$
- By uniqueness of the Cholesky decomposition: $R_1 = R_2$
- Then $Q_1 = Q_2$ follows from $Q = AR^{-1}$

QR Decomposition with MATLAB

MATLAB's qr function performs QR decomposition:

$$A = QR$$

Q is orthogonal, R is upper triangular.

Matlab Code
$$n = 7$$
; $A = randn(n)$; $[Q, R] = qr(A)$; $Q'*Q norm(eye(n) - Q'*Q) norm(A - Q*R)$

Observations from Output

Orthogonality:

$$Q^{ op}Qpprox I \Rightarrow ext{norm(eye(n) - Q'*Q)} \ll 1$$

Accuracy of Factorization:

$$A pprox QR \Rightarrow ext{norm}(A - Q*R) \ll 1$$

- **Diagonal of R:** Entries on the diagonal of *R* are *not* necessarily positive.
 - MATLAB does not enforce this by default
 - Positive diagonals are needed only for uniqueness

Conclusion

- MATLAB's qr is efficient and numerically stable.
- Orthogonality and reconstruction errors are typically small.
- Diagonal signs in R are not fixed by MATLAB.

Explore further: help qr

Numerical Stability of Rotators and Reflectors

Wilkinson's analysis (see Wilkinson [81, pp. 126-162]) shows that:

- Both rotators (Givens rotations) and reflectors (Householder matrices) are numerically stable.
- They are used to construct orthogonal matrices *Q* for QR decomposition.
- When applied to a matrix A, they produce a small backward error:

$$\widehat{QA} = Q(A+E)$$
, with $\frac{\|E\|_2}{\|A\|_2} \ll 1$

Interpretation: The computed result is the exact result for a slightly perturbed input.

Stability Under Repeated Application

Applying multiple orthogonal transformations:

$$\widehat{Q_2Q_1A} = Q_2Q_1A + E$$
, where $\frac{\|E\|_2}{\|A\|_2} \ll 1$

This follows from:

$$\widehat{Q_1A} = Q_1(A + E_1), \quad \widehat{Q_2(Q_1A)} = Q_2Q_1A + Q_2E_1 + E_2$$

Then:

$$E = Q_2 E_1 + E_2, \quad \Rightarrow ||E||_2 \le ||E_1||_2 + ||E_2||_2$$

Conclusion: The backward error remains small after multiple applications.

Note on Stability

- Both Givens and Householder transformations are normwise backward stable.
- Errors accumulate slowly: $||E||_2/||A||_2$ remains small.
- QR decomposition using orthogonal transformations is highly reliable numerically.

Implication: QR-based methods are robust and suitable for solving least squares problems.

Definition of Complex Rotator

Let $z \in \mathbb{C}$, $z \neq 0$. Define

$$U = \frac{1}{|z|} \begin{bmatrix} \bar{z} & -|z| \\ |z| & z \end{bmatrix}$$

- Goal: Show that U is unitary
- and det(U) = 1

(a) U is Unitary

We compute:

$$U^*U = \left(\frac{1}{|z|} \begin{bmatrix} \bar{z} & -|z| \\ |z| & z \end{bmatrix}\right)^* \left(\frac{1}{|z|} \begin{bmatrix} \bar{z} & -|z| \\ |z| & z \end{bmatrix}\right)$$
$$= \frac{1}{|z|^2} \begin{bmatrix} z & |z| \\ -|z| & \bar{z} \end{bmatrix} \begin{bmatrix} \bar{z} & -|z| \\ |z| & z \end{bmatrix} = \frac{1}{|z|^2} \begin{bmatrix} |z|^2 + |z|^2 & 0 \\ 0 & |z|^2 + |z|^2 \end{bmatrix} = I$$

Conclusion: U is unitary.

(b) Determinant of U

Use the formula for determinant of a 2×2 matrix:

$$\det(U) = \frac{1}{|z|^2} \det \begin{bmatrix} \bar{z} & -|z| \\ |z| & z \end{bmatrix} = \frac{1}{|z|^2} (\bar{z} \cdot z + |z|^2) = \frac{1}{|z|^2} (|z|^2 + |z|^2) = 1$$

Conclusion: det(U) = 1

Extension to $\mathbb{C}^{n\times n}$

Note: Complex rotators are building blocks for stable algorithms in the complex domain.

(a) Existence of Complex Reflector

Given $x, y \in \mathbb{C}^n$, with $x \neq y$, $||x||_2 = ||y||_2$, and $(x, y) \in \mathbb{R}$.

Claim: There exists a unitary matrix Q of the form:

$$Q = I - \beta u u^*, \quad \beta \in \mathbb{C}, \ u \in \mathbb{C}^n$$

such that Qx = y.

Theorem (Complex QR Decomposition)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular.

Then: There exist unique matrices $Q, R \in \mathbb{C}^{n \times n}$ such that:

- Q is unitary: $Q^*Q = I$,
- R is **upper triangular** with **real**, **positive** entries on the diagonal,
- A = QR.

Theorem (Complex QR Decomposition)

Let $A \in \mathbb{C}^{n \times n}$ be nonsingular.

Then: There exist unique matrices $Q, R \in \mathbb{C}^{n \times n}$ such that:

- Q is unitary: $Q^*Q = I$,
- R is **upper triangular** with **real**, **positive** entries on the diagonal,
- A = QR.

Uniqueness: If $A = Q_1R_1 = Q_2R_2$ with both R_1, R_2 having real, positive diagonals and Q_1, Q_2 unitary, then:

$$Q_1 = Q_2, \quad R_1 = R_2$$

MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

```
Code
```


MATLAB: QR of Complex Matrix

Try the following MATLAB commands:

```
Code
n = 4;
A = randn(n) + 1i * randn(n); % Complex matrix
[Q, R] = qr(A); % QR decomposition

Q' % Conjugate transpose of Q
Q'*Q % Should be the identity
norm(eye(n) - Q'*Q) % Should be near zero
norm(A - Q*R) % Should be near zero
```

Observations:

- Q is unitary: $Q^*Q \approx I$
- $A \approx QR$: small residual ||A QR||
- MATLAB handles complex matrices naturally

Theorem 3.3.3 (Rectangular QR Decomposition)

Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$ (i.e., a tall matrix).

Then there exist:

- An **orthogonal** matrix $Q \in \mathbb{R}^{n \times n}$, such that $Q^T Q = I$,
- A matrix $R \in \mathbb{R}^{n \times m}$, of the form:

$$R = egin{bmatrix} \hat{R} \ 0 \end{bmatrix}, \quad ext{where } \hat{R} \in \mathbb{R}^{m imes m} ext{ is upper triangular}$$

such that:

$$A = QR$$

Theorem 3.3.3 (Rectangular QR Decomposition)

Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$ (i.e., a tall matrix).

Then there exist:

- An **orthogonal** matrix $Q \in \mathbb{R}^{n \times n}$, such that $Q^T Q = I$,
- A matrix $R \in \mathbb{R}^{n \times m}$, of the form:

$$R = egin{bmatrix} \hat{R} \ 0 \end{bmatrix}, \quad ext{where } \hat{R} \in \mathbb{R}^{m imes m} ext{ is upper triangular}$$

such that:

$$A = QR$$

Summary:

- Q: orthogonal basis for \mathbb{R}^n
- R: upper-trapezoidal (first m rows upper triangular, rest zero)

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an $n \times m$ matrix A using Householder reflectors is approximately:

Flops
$$\approx 2nm^2 - \frac{2}{3}m^3$$

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an $n \times m$ matrix A using Householder reflectors is approximately:

Flops
$$\approx 2nm^2 - \frac{2}{3}m^3$$

Sketch of Derivation:

- For each of the *m* Householder steps:
 - Reflector formation: $\sim 2(n-k+1)$ flops
 - Apply reflector to trailing submatrix of size $(n-k+1) \times (m-k)$
 - Cost per step: $\sim 2(n-k+1)(m-k)$
- Total flops:

$$\sum_{k=1}^{m} 2(n-k+1)(m-k) \approx 2nm^2 - \frac{2}{3}m^3$$

Exercise: Flop Count for QR via Reflectors

Goal: Show that the flop count for computing the QR decomposition of an $n \times m$ matrix A using Householder reflectors is approximately:

Flops
$$\approx 2nm^2 - \frac{2}{3}m^3$$

Sketch of Derivation:

• For each of the *m* Householder steps:

This is linear in n and quadratic in m

- Reflector formation: $\sim 2(n-k+1)$ flops
- Apply reflector to trailing submatrix of size $(n-k+1) \times (m-k)$
- Cost per step: $\sim 2(n-k+1)(m-k)$
- Total flops:

$$\sum_{k=0}^{m} 2(n-k+1)(m-k) \approx 2nm^2 - \frac{2}{3}m^3$$

Interpretation:

If $n \gg m$, then

then Flops $\approx 2nm^2$

QR Decomposition and Full Rank

Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$. The QR decomposition:

$$A = QR$$

with $Q \in \mathbb{R}^{n \times n}$ orthogonal and $R \in \mathbb{R}^{n \times m}$ (upper trapezoidal), helps in solving the least squares problem:

$$\min_{x} \|Ax - b\|_2$$

QR Decomposition and Full Rank

Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$. The QR decomposition:

$$A = QR$$

with $Q \in \mathbb{R}^{n \times n}$ orthogonal and $R \in \mathbb{R}^{n \times m}$ (upper trapezoidal), helps in solving the least squares problem:

$$\min_{x} \|Ax - b\|_2$$

Key Insight: Rank and Usefulness

- $\operatorname{rank}(A) = \operatorname{rank}(R)$
- $R = Q^T A \Rightarrow \operatorname{rank}(R) \leq \operatorname{rank}(A)$
- $A = QR \Rightarrow \operatorname{rank}(A) \leq \operatorname{rank}(R)$
- Therefore, $|\operatorname{rank}(A) = \operatorname{rank}(R)|$

QR Decomposition and Full Rank

Let $A \in \mathbb{R}^{n \times m}$ with $n \geq m$. The QR decomposition:

$$A = QR$$

with $Q \in \mathbb{R}^{n \times n}$ orthogonal and $R \in \mathbb{R}^{n \times m}$ (upper trapezoidal), helps in solving the least squares problem:

$$\min_{x} \|Ax - b\|_2$$

Key Insight: Rank and Usefulness

- $\operatorname{rank}(A) = \operatorname{rank}(R)$
- $R = Q^T A \Rightarrow \operatorname{rank}(R) \leq \operatorname{rank}(A)$
- $A = QR \Rightarrow \operatorname{rank}(A) \leq \operatorname{rank}(R)$
- Therefore, $|\operatorname{rank}(A) = \operatorname{rank}(R)|$

Conclusion:

• A has full rank $\Leftrightarrow R$ is nonsingular (i.e., invertible)

Theorem (Least Squares via QR)

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, with n > m, and suppose that A has full rank.

Then the least squares problem:

$$\min_{x \in \mathbb{R}^m} \|Ax - b\|_2$$

has a unique solution, given as follows:

• Compute the QR decomposition: A = QR, where

$$Q \in \mathbb{R}^{n imes n}$$
 (orthogonal), $R = egin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$, $\hat{R} \in \mathbb{R}^{m imes m}$ (upper triangular)

- Let $c = Q^T b$, and define $\hat{c} \in \mathbb{R}^m$ as the first m entries of c
- Solve the system:

$$\hat{R}x = \hat{c}$$

Theorem (Least Squares via QR)

Let $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$, with n > m, and suppose that A has full rank.

Then the least squares problem:

$$\min_{x \in \mathbb{R}^m} \|Ax - b\|_2$$

has a unique solution, given as follows:

• Compute the QR decomposition: A = QR, where

$$Q \in \mathbb{R}^{n \times n}$$
 (orthogonal), $R = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$, $\hat{R} \in \mathbb{R}^{m \times m}$ (upper triangular)

- Let $c = Q^T b$, and define $\hat{c} \in \mathbb{R}^m$ as the first m entries of c
- Solve the system:

$$\hat{R}x = \hat{c}$$

Conclusion: The solution to the least squares problem is

$$x = \hat{R}^{-1}\hat{c}$$

MATLAB Example: Least Squares via QR

Given: Overdetermined system Ax = b, where $A \in \mathbb{R}^{5 \times 3}$

```
MATLAB Code
n = 5: m = 3:
A = randn(n, m);
b = randn(n, 1):
[Q, R_full] = qr(A);
R = R_{full}(1:m, 1:m):
c = Q' * b;
c hat = c(1:m):
x = R \setminus c_{hat};
residual norm = norm(A*x - b)
```

Reference Books

- Lloyd N. Trefethen and David Bau III, Numerical Linear Algebra, SIAM, 1997.
- Gene H. Golub and Charles F. Van Loan, *Matrix Computations*, 4th Edition, Johns Hopkins University Press, 2013.
- David S. Watkins, Fundamentals of Matrix Computations, 3rd Edition, Wiley, 2010.
- James W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
- Yousef Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, 2011.
- **Gilbert Strang**, *Linear Algebra and Its Applications*, 4th Edition, Cengage Learning, 2006.
- Alan J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2005.

Thank You!

